
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

PNP RF Transistor

This device is designed for general RF amplifier and mixer applications to 250 mHz with collector currents in the 1.0 mA to 30 mA range. Sourced from Process 75.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	20	V
V _{CBO}	Collector-Base Voltage	20	V
V _{EBO}	Emitter-Base Voltage	3.0	V
I _C	Collector Current - Continuous	50	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
3) All voltages (V) and currents (A) are negative polarity for PNP transistors.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Мах		Units
		MPSH81	*MMBTH81	
P _D	Total Device Dissipation Derate above 25°C	350 2.8	225 1.8	mW mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{ ext{ hetaJA}}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

PNP RF Transistor

 $I_{C} = 10 I_{E}$

- 100

-10

(cor	ntin	ued)	
(00.			

Electrical Characteristics TA = 25°C unless otherwise noted						
Symbol	Parameter	Test Conditions	Min	Max	Units	
OFF CHARACTERISTICS						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0$ mA, $I_{\rm B} = 0$	20		V	
	Collector-Base Breakdown Voltage	$ _{c} = 10 \text{ µA}, _{E} = 0$	20		V	

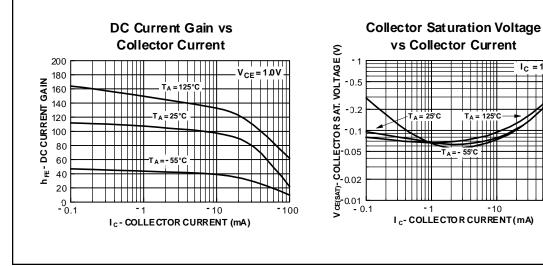
(=) = = =	0				
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 10 \ \mu A, \ I_{E} = 0$	20		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	3.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 10 \text{ V}, I_{E} = 0$		100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 2.0 \text{ V}, I_{C} = 0$		100	nA

ON CHARACTERISTICS

h _{FE}	DC Current Gain	$I_{C} = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$	60		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 5.0 \text{ mA}, I_{B} = 0.5 \text{ mA}$		0.5	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{C} = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$		0.9	V

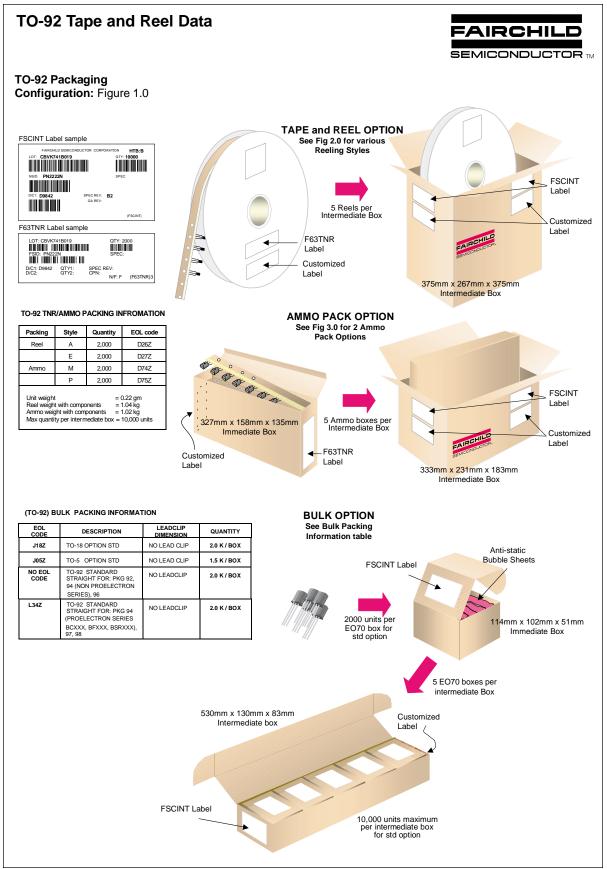
SMALL SIGNAL CHARACTERISTICS

f _T	Current Gain - Bandwidth Product	$I_{C} = 5.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	600		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$		0.85	pF
C _{ce}	Collector Emitter Capcitance	$V_{CB} = 10 \text{ V}, I_B = 0, f = 1.0 \text{ MHz}$		0.65	pF

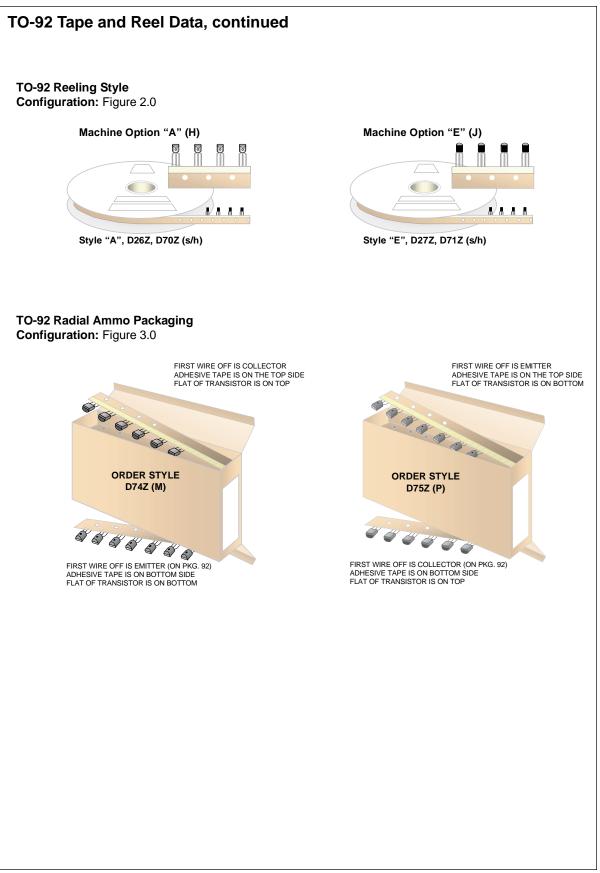

*Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

NOTE: All voltages (V) and currents (A) are negative polarity for PNP transistors.

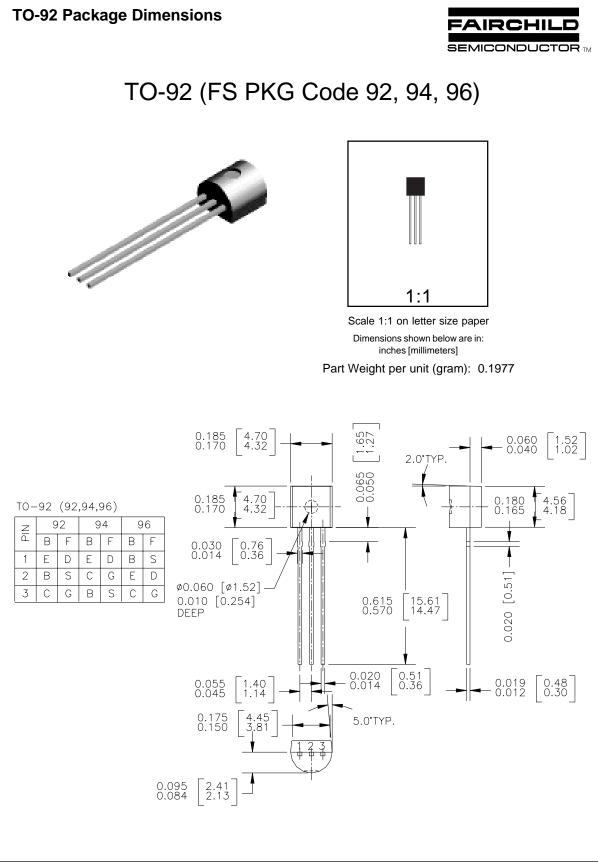
Spice Model

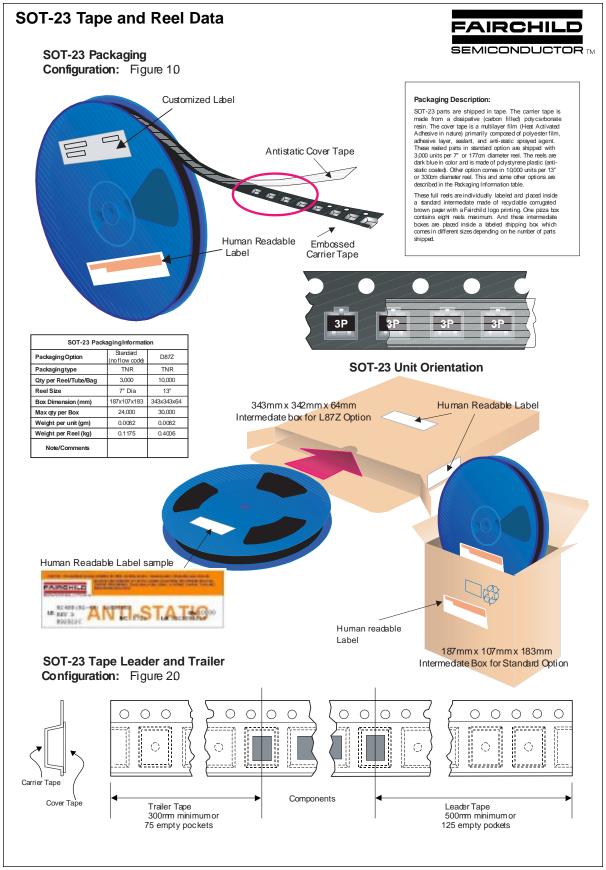

PNP(Is=10f Xti=3 Eg=1.11 Vaf=100 Bf=133.8 Ise=1.678p Ne=2.159 Ikf=.1658 Nk=.901 Xtb=1.5 Var=100 Br=1 Isc=9.519n Nc=3.88 Ikr=5.813 Rc=7.838 Cjc=2.81p Mjc=.1615 Vjc=.8282 Fc=.5 Cje=2.695p Mje=.3214 Vje=.7026 Tr=11.32n Tf=97.83p Itf=69.29 Xtf=599u Vtf=10)

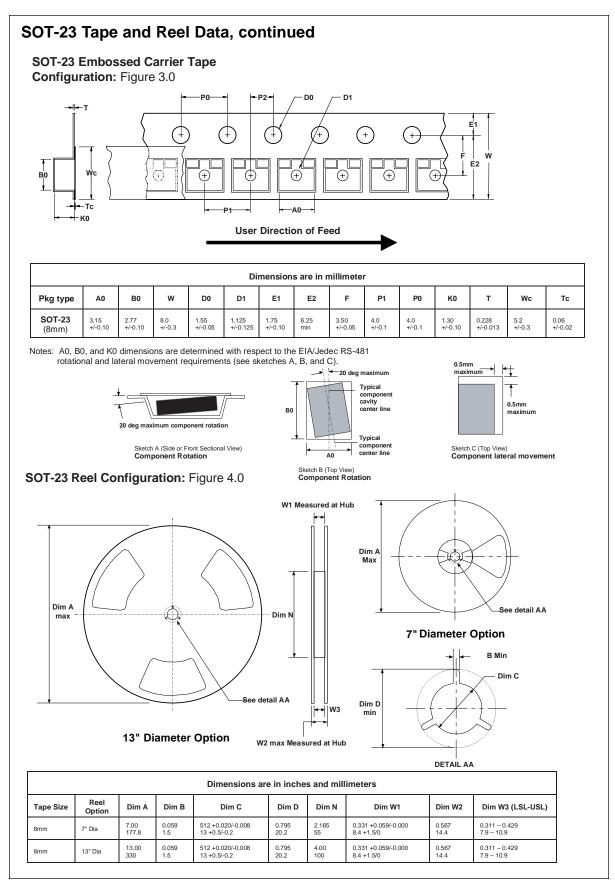
Typical Characteristics

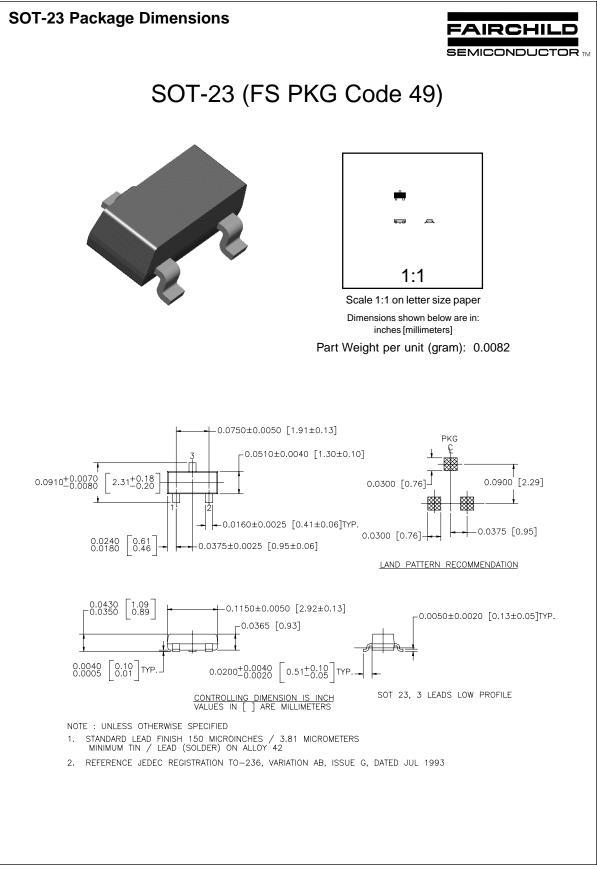

MPSH81 / MMBTH81

MPSH81 / MMBTH81 **PNP RF Transistor** (continued) **Typical Characteristics** (continued) Base-Emitter ON Voltage **Base-Emitter Saturation NOLTAGE (V)** vs Collector Current Voltage vs Collector Current V BEOM- BASE-EMITTER ON VOLTAGE (V) 0-0 0-0 700 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 7000 - 0 70000 70 V_{CE} = 10V $I_{\rm C} = 10 I_{\rm B}$ T_A = 25°C **1.**2 ŦĦ -1 -0.8 -0.6 T_A = 100°C †††† а-(_{мс})-04 -0-04 Л Γ_Δ = 125 0 - 0.1 **-**0.1 -100 -1 -10 I^C- COLLECTOR CURRENT (mA) -10 -100 Ic - COLLECTOR CURRENT (mA) Input / Output Capacitance **Collector Reverse Current** I ces- COLLECTOR REVERSE CURRENT (IA) vs Ambient Temperature vs Reverse Bias Voltage 3 100 = 1.0 MHz 2.8 **CAPACITANCE (pF)** 2.2 2.2 2.2 1.8 1.6 1.6 10 V_{CE}=-6.0V Cobo V_{CE}=-3.0V 0.1 1.4 Ċibo 1.2 1 25 50 75 100 150 125 0 -2 -4 -6 -8 -10 T_A - AMBIENT TEMPERATURE (°C) **REVERSE BIAS VOLTAGE (V) Contours of Constant Gain Power Dissipation vs** Ambient Temperature Bandwidth Product (f_T) 350 TO-92 -8 SOT-23 1500 MHz 1200 MH -6 500 MHz 200 MH -2 500 MHz 200 MH 900 MHz _ ل_ - 0.1 0 -10 -100 - 1 50 75 100 TEMPERATURE (°C) 0 25 125 150 Ic- COLLECTOR CURRENT (mA)


©2001 Fairchild Semiconductor Corporation


March 2001, Rev. B1


July 1999, Rev. A



©2000 Fairchild Semiconductor International

September 1999, Rev. C

September 1999, Rev. C

